Harmful Algal Blooms: Nature, Occurrence and Regulatory Outlook

Karl Mueller
Environmental Manager
Refinery Specialties, Inc.
Scope

• Harmful Algal Blooms (HABs) defined
• History
• Algal Species of Concern
• Algal Toxins
• Factors Contributing to HAB development
• Current Recommended Exposure Levels
• Regulatory Outlook
Scope (continued)

- Implications for Regulated Community
- Algal Control Methods
- Recommendations
- Conclusion
Four Main Questions

• What Are HABs?
• What toxins are associated with HABs?
• Under what conditions do HABs form?
• How can they be controlled?
Harmful Algal Blooms - defined

• An algal bloom is a rapid increase or accumulation in the population of algae in a water system.

• A Harmful Algal Bloom (HAB) is an algal bloom which results in (or has the potential to result in) adverse impacts to human health and the environment.

• May occur in marine, freshwater, and brackish water environments.
Harmful Algal Blooms - Impacts

HABs can have a variety of adverse impacts, including:

1. Dramatically altering water chemistry (pH and DO)
 - Raise pH by removing CO₂ and increasing OH⁻ concentration
 - Supersaturate DO levels in upper water column (near-surface)
 - Reduce DO through cellular respiration and biological degradation

2. Reducing light transmission – habitat alteration

3. Contributing to taste and odor problems (drinking water sources)

4. Other aesthetic effects
 - water discoloration, interference with recreational activities

5. Releasing toxins into water bodies (source and receiving)
 - Cause illness and death via food chain or biomass accumulation (neurotoxins)
 - Cause mechanical damage to freshwater and marine organisms
 - Human health risk through exposure and consumption of contaminated seafood and drinking water
Algal Activity in Aquatic Environments

- Algae exhibit strong diurnal patterns of activity (photosynthetic activity)
- During day, algae migrate upward in water column, DO and pH levels increase
 - Photosynthesis results in O_2 production
 - CO_2 removal from atmosphere and water (results in increased OH^- concentration and increased alkalinity)
- During day, pattern is reversed – DO consumed through respiration, CO_2 given off
Examples of documented human illnesses / syndromes associated with HABs include:

- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP)
- Cyanobacterial Toxin Poisoning (CTP)
HAB-related illnesses – causal organisms

- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP)
- Cyanobacterial Toxin Poisoning (CTP)

Dinoflagellate (marine)
HAB-related illnesses – causal organisms

- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP)
- Cyanobacterial Toxin Poisoning (CTP)

- Dinoflagellate (marine)
- Diatom (marine)
HAB-related illnesses – causal organisms

- Paralytic Shellfish Poisoning (PSP)
- Diarrheal Shellfish Poisoning (DSP)
- Neurotoxic Shellfish Poisoning (NSP)
- Ciguatera Fishfood Poisoning (CFP)
- Estuary Associated Syndrome (EAS)
- Amnesic Shellfish Poisoning (ASP)
- Cyanobacterial Toxin Poisoning (CTP)

- Usually the result of drinking contaminated water
- A sub-acute condition characterized by liver damage (jaundice)
- May be accompanied by other, often reversible, symptoms
- Acute cases can result in neurotoxic effects

Cyanobacteria - Overview

General features:

• Single-celled organism
 – Unicellular and filamentous species
 – May form colonies or aggregations – phototrophic biofilms or microbial mats
 – Can exist as free-living individuals or in symbiotic relationships, e.g. lichen
 – Found in a variety of ecosystems

• Autotrophic
 – Reduce atmospheric CO₂ to produce carbohydrate (under aerobic conditions)
 – Fix both N₂ and C; produce O₂

Cell type comparison
Cyanobacteria - Overview

General features:

• Single-celled organism
 – Unicellular and filamentous species
 – May form colonies or aggregations – phototrophic biofilms or microbial mats
 – Can exist as free-living individuals or in symbiotic relationships, e.g. lichen
 – Found in a variety of ecosystems

• Autotrophic
 – Reduce atmospheric CO₂ to produce carbohydrate (under aerobic conditions)
 – Fix both N₂ and C; produce O₂

Cell type comparison

• Complex internal structure (organelles)
• Membrane-bound “true” nucleus
• Common metabolic pathways
• Chlorophyll within chloroplasts
Cyanobacteria - Overview

General features:

• Single-celled organism
 – Unicellular and filamentous species
 – May form colonies or aggregations – phototrophic biofilms or microbial mats
 – Can exist as free-living individuals or in symbiotic relationships, e.g. lichen
 – Found in a variety of ecosystems

• Autotrophic
 – Reduce atmospheric CO₂ to produce carbohydrate (under aerobic conditions)
 – Fix both N₂ and C; produce O₂

Cell type comparison

- Simple internal structure (few organelles)
- No true nucleus; not membrane-bound
- Variety of metabolic pathways
- Chlorophyll throughout cytoplasm
Algal Species and Cyanotoxins Associated with HABs

<table>
<thead>
<tr>
<th>Genera</th>
<th>Cyanotoxins</th>
<th>Target Organ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcystis, Anabaena, Planktothrix (Oscillatoria), Nostoc, Hapalosiphon, Anabaenopsis, Woronichinia</td>
<td>Microcystins</td>
<td>Liver</td>
</tr>
<tr>
<td>Nodularia</td>
<td>Nodularins</td>
<td>Liver</td>
</tr>
<tr>
<td>Anabaena, Planktothrix (Oscillatoria), Aphanizomenon, Woronichinia</td>
<td>Anatoxin-a</td>
<td>Synapse</td>
</tr>
<tr>
<td>Anabaena</td>
<td>Anatoxin-a(S)</td>
<td>Synapse</td>
</tr>
<tr>
<td>Cylindrospermopsis, Aphanizomenon, Umezakia</td>
<td>Cylindrospermopsins</td>
<td>Liver</td>
</tr>
<tr>
<td>Lyngbya</td>
<td>Lyngbyatoxin-a</td>
<td>Skin, GI tract</td>
</tr>
<tr>
<td>Anabaena, Aphanizomenon, Cylindrospermopsis, Lyngbya</td>
<td>Saxitoxin</td>
<td>Synapse</td>
</tr>
<tr>
<td>All</td>
<td>Lipopolysaccharides</td>
<td>Exposed Tissue (irritant)</td>
</tr>
<tr>
<td>Lyngbya, Planktothrix (Oscillatoria), Schizothrix</td>
<td>Aplysia toxins</td>
<td>Skin</td>
</tr>
<tr>
<td>All</td>
<td>BMAA</td>
<td>CNS</td>
</tr>
</tbody>
</table>
Microcystin/Microcystin-LR

- Named after Microcystis aeruginosa
- Most prevalent and well-known algal toxin – has been intensively studied
- 60 known variants; Microcystin-LR most commonly reported (standard lab method)
- Cyclic peptides as a class represent greatest human health concern
- Hepatotoxin; may be tumor promoter at low doses
- Stable over wide range of temperature and pH, not easily removed by traditional water treatment methods

Structure – cyclic peptide

Nodularins

- Named after Nodularia spumigena (type species) – filamentous algae
- HABs associated with nodularin formation occur in saline inland waters and brackish systems, e.g. estuaries
- Similar chemical structure to microcystin
- Very stable and resistant to breakdown within natural environment
- Most common toxin associated with HABs globally

Structure – cyclic peptide

Photo courtesy http://oceandatacenter.ucsc.edu/PhytoGallery/Freshwater/Nodularia.html
Anatoxins

- Alkaloids as a class known to exhibit both toxic and psychotropic effects on mammals – biologically active
- Associated with at least four algal genera
- Anatoxin-a first identified in 1961 ("Very Fast Death Factor") following cattle poisoning event in Canada
- Potent, fast-acting neurotoxins
- Stimulates nicotinic acetylcholine receptors, but not degraded by cholinesterase
- Used for investigating acetylcholine receptors in the nervous system
- Potential use as bioweapon

[Structure – alkaloid]

By Cacycle (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or Public domain], via Wikimedia Commons
Cylindrospermopsins (CYN or CYL)

- Named for Cylindrospermopsis raciborskii – a filamentous algae
- Certain Cylindrospermopsis strains also capable of producing anatoxins and saxitoxin
- Implicated in hepatoenteritis outbreak in Palm Island, Australia in 1979
- Typically found in tropical regions but now present in temperate zones, e.g. Great Lakes (South American strain)
- A hepatotoxin and nephrotoxin
- Bioaccumulation potential
- After microcystins, the algal toxins of greatest concern in US

Photo courtesy http://oceandatacenter.ucsc.edu/PhytoGallery/Freshwater/Cylindrospermopsins.html
Saxitoxin (STX)

- First identified in butter clam (Saxidomus giganteus)
- Produced by some marine dinoflagellates and puffer fish; several strains of algae
- One of most potent natural neurotoxins known
- Cause of Paralytic Shellfish Poisoning (PSP)
- Na-channel blocker – disrupts neural response and prevents normal cell function
- Results in flaccid paralysis and can lead to death from respiratory failure
- Originally isolated and described by US military; chemical weapon designation TZ

Structure – alkaloid

By Cicycle (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or Public domain], via Wikimedia Commons

Photo courtesy http://oceandatcenter.ucsc.edu/PhytoGallery/Freshwater/Cylindrospermopsins.html
Lyngbyatoxin-a

- Cyanotoxin produced by Moorea producens (formerly Lyngbya majuscule)
- Lyngbya sp. also responsible for producing aplysiatoxins
- A defensive toxin produced to deter predators
- Low concentrations can cause dermatitis
- A blister agent (vesicant) and carcinogen (tumorigenic properties)
- Inflammatory agent

By Cacyle (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or Public domain], via Wikimedia Commons
Aplysiatoxins

- Produced by marine algal species (Lyngbya sp.)
- Also associated with filamentous species such as Schizothrix calcicola and Oscillatoria nigroviridis
- Dibromoaplysiatoxin (hydroxyl group on six-member ring replaced with 2nd Br atom)
- Dermatotoxic – an irritant most commonly associated with skin inflammation through direct contact
- Potent tumor promoters – activate Protein kinase C – mechanism in common with Lyngbyatoxins

Photo courtesy http://oceandatacenter.ucsc.edu/PhytoGallery/Freshwater/Lyngbya.html

Structure – alkaloid
B-Methylamino-L-alanine (BMAA)

- Produced by cyanobacteria in marine, freshwater, brackish and terrestrial settings
- Also found in aquatic organisms, lichens, fern species, cycads and in humans and animals that consume cycad seeds
- Multiple mechanisms of action; not completely understood
- BMAA present in brains of patients suffering from progressive non-genetic neurological diseases; causally implicated in so-called “tangle diseases” of brain
- Research underway to confirm and understand disease-causing mechanisms
Role of Nutrients in HAB Formation

• In natural systems nitrogen, carbon, and phosphorus are key nutrients:
 – N present as metabolic waste products from aquatic organisms (NH₃, urea)
 – N also present as nitrates and nitrites from agricultural runoff (fertilizers, CAFOs, etc.)
 – Cyanobacteria have ability to fix atmospheric N₂
 – P is in shortest supply – a limiting nutrient

• Algae will incorporate bioavailable N and P in water column; synthesize own C through photosynthesis
Role of Nutrients in HAB Formation (cont’d)

• In natural systems nitrogen, carbon, and phosphorus are three principal nutrients:
 – N present as metabolic waste products (NH$_3$, urea)
 – N also present as nitrates and nitrites from agricultural runoff (fertilizers, CAFOs, etc.)
 – Cyanobacteria have ability to fix atmospheric N$_2$
 – P is in shortest supply – a limiting nutrient
• Algae will incorporate bioavailable N and P in water column; synthesize own C through photosynthesis
• Suggests control of N and P critical!
Role of Nutrients in HAB Formation (cont’d)

• However....
 – The picture with respect to HAB formation (and the species implicated) is considerably more complex

• While nutrients play a crucial role, other environmental variables are also important, such as
 1. Temperature (optima vary by species)
 2. Light (photoperiod and transmissivity)
 • Abiotic sources of turbidity
 3. Weather
 • Wind (promotes mixing and overturn)
 • Rainfall events (flushing/nutrient transport)
 4. Biotic factors
Role of Nutrients in HAB Formation (cont’d)

- **Trophic State Index (TSI)** – relates presence/absence of nutrients to estimate of biological condition
 - Trophic state = the total weight of biomass in a given water body at the time of measurement
- **Carlson Index** – relates three independent, correlated variables to classify water bodies in terms of algal biomass:
 1. Chlorophyll pigments (µg/l)
 2. Phosphorus concentration (µg/l)
 3. Secchi depth (m)
Role of Nutrients in HAB Formation (cont’d)

<table>
<thead>
<tr>
<th>Trophic Index (TI)</th>
<th>Chlorophyll (µg/l)</th>
<th>P (µg/l)</th>
<th>Secchi Depth (m)</th>
<th>Trophic Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 – 40</td>
<td>0 – 2.6</td>
<td>0 – 12</td>
<td>> 8 – 4</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>40 – 50</td>
<td>2.6 – 20</td>
<td>12 – 24</td>
<td>4 – 2</td>
<td>Mesotrophic</td>
</tr>
<tr>
<td>50 – 70</td>
<td>20 – 56</td>
<td>24 – 96</td>
<td>2 – 0.5</td>
<td>Eutrophic</td>
</tr>
<tr>
<td>70 – 100+</td>
<td>56 – 155+</td>
<td>96 – 384</td>
<td>0.5 – < 2.5</td>
<td>Hypereutrophic</td>
</tr>
</tbody>
</table>
Role of Nutrients in HAB Formation (cont’d)

<table>
<thead>
<tr>
<th>Trophic Index (TI)</th>
<th>Chlorophyll (µg/l)</th>
<th>P (µg/l)</th>
<th>Secchi Depth (m)</th>
<th>Trophic Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 – 40</td>
<td>0 – 2.6</td>
<td>0 – 12</td>
<td>> 8 – 4</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>40 – 50</td>
<td>2.6 – 20</td>
<td>12 – 24</td>
<td>4 – 2</td>
<td>Mesotrophic</td>
</tr>
<tr>
<td>50 – 70</td>
<td>20 – 56</td>
<td>24 – 96</td>
<td>2 – 0.5</td>
<td>Eutrophic</td>
</tr>
<tr>
<td>70 – 100+</td>
<td>56 – 155+</td>
<td>96 – 384</td>
<td>0.5 – < 2.5</td>
<td>Hypereutrophic</td>
</tr>
</tbody>
</table>

- Nutrient poor/low algal biomass
- Low primary productivity
- Relatively little sediment loading
- Almost no turbidity
- DO levels high; support oxygen-sensitive species
- Low HAB formation potential
Role of Nutrients in HAB Formation (cont’d)

<table>
<thead>
<tr>
<th>Trophic Index (TI)</th>
<th>Chlorophyll (µg/l)</th>
<th>P (µg/l)</th>
<th>Secchi Depth (m)</th>
<th>Trophic Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 – 40</td>
<td>0 – 2.6</td>
<td>0 – 12</td>
<td>> 8 – 4</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>40 – 50</td>
<td>2.6 – 20</td>
<td>12 – 24</td>
<td>4 – 2</td>
<td>Mesotrophic</td>
</tr>
<tr>
<td>50 – 70</td>
<td>20 – 56</td>
<td>24 – 96</td>
<td>2 – 0.5</td>
<td>Eutrophic</td>
</tr>
<tr>
<td>70 – 100+</td>
<td>56 – 155+</td>
<td>96 – 384</td>
<td>0.5 – < 2.5</td>
<td>Hypereutrophic</td>
</tr>
</tbody>
</table>

- Moderate nutrient/sediment loads
- Good primary productivity; seasonal algae increase
- Higher turbidity
- DO levels high; vary seasonally
- Moderate HAB formation potential
Role of Nutrients in HAB Formation (cont’d)

<table>
<thead>
<tr>
<th>Trophic Index (TI)</th>
<th>Chlorophyll (µg/l)</th>
<th>P (µg/l)</th>
<th>Secchi Depth (m)</th>
<th>Trophic Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 – 40</td>
<td>0 – 2.6</td>
<td>0 – 12</td>
<td>> 8 – 4</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>40 – 50</td>
<td>2.6 – 20</td>
<td>12 – 24</td>
<td>4 – 2</td>
<td>Mesotrophic</td>
</tr>
<tr>
<td>50 – 70</td>
<td>20 – 56</td>
<td>24 – 96</td>
<td>2 – 0.5</td>
<td>Eutrophic</td>
</tr>
<tr>
<td>70 – 100+</td>
<td>56 – 155+</td>
<td>96 – 384</td>
<td>0.5 – < 2.5</td>
<td>Hypereutrophic</td>
</tr>
</tbody>
</table>

- High nutrient/sediment loads
- High primary productivity; algal populations year-round
- Much higher turbidity
- DO levels high but may be seasonally low, esp. at depth
- Significant HAB formation potential
Role of Nutrients in HAB Formation (cont’d)

<table>
<thead>
<tr>
<th>Trophic Index (TI)</th>
<th>Chlorophyll (µg/l)</th>
<th>P (µg/l)</th>
<th>Secchi Depth (m)</th>
<th>Trophic Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 – 40</td>
<td>0 – 2.6</td>
<td>0 – 12</td>
<td>> 8 – 4</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>40 – 50</td>
<td>2.6 – 20</td>
<td>12 – 24</td>
<td>4 – 2</td>
<td>Mesotrophic</td>
</tr>
<tr>
<td>50 – 70</td>
<td>20 – 56</td>
<td>24 – 96</td>
<td>2 – 0.5</td>
<td>Eutrophic</td>
</tr>
<tr>
<td>70 – 100+</td>
<td>56 – 155+</td>
<td>96 – 384</td>
<td>0.5 – < 2.5</td>
<td>Hypereutrophic</td>
</tr>
</tbody>
</table>

- Extremely high nutrient/sediment loads
- Primary producers abundant – other species significantly impacted or absent
- Extremely high turbidity
- DO levels low, pH high

![Images of HAB and water quality issues](images)
Trophic Index (TI) and Chlorophyll (µg/l)

<table>
<thead>
<tr>
<th>Trophic Index (TI)</th>
<th>Chlorophyll (µg/l)</th>
<th>P (µg/l)</th>
<th>Secchi Depth (m)</th>
<th>Trophic Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 – 40</td>
<td>0 – 2.6</td>
<td>0 – 12</td>
<td>> 8 – 4</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>40 – 50</td>
<td>2.6 – 20</td>
<td>12 – 24</td>
<td>4 – 2</td>
<td>Mesotrophic</td>
</tr>
<tr>
<td>50 – 70</td>
<td>20 – 56</td>
<td>24 – 96</td>
<td>2 – 0.5</td>
<td>Eutrophic</td>
</tr>
<tr>
<td>70 – 100+</td>
<td>56 – 155+</td>
<td>96 – 384</td>
<td>0.5 – < 2.5</td>
<td>Hypereutrophic</td>
</tr>
</tbody>
</table>

- Extremely high nutrient/sediment loads
- Primary producers abundant – other species impacted
- Extremely high turbidity
- DO levels low, pH high
- HAB formation likely
HAB Events – Three Scenarios

Lake Erie Algal Blooms of 2011 and 2014

- Maumee and Cuyahoga River watersheds feed into Western Basin of Lake Erie
 - Maumee – largely agricultural, non-point source runoff
 - Cuyahoga – predominantly urban/suburban land use; point sources and non-point sources
 - Phosphorus is key nutrient
- Heavy rainfall events in Maumee watershed in Summer 2011 and 2014 resulted in high phosphorus levels – peaks coincided with HAB events
- High rainfalls event in urban watershed tend to dilute P; not a major HAB contributor
- HABs an ongoing/recurring problem
HAB Events – Three Scenarios

Field Remediation Site – Central Texas

• NWIRP McGregor (active 1945 – 1995)
 – Manufactured munitions and solid rocket motors
 – Perchlorate > 4 ppb identified in surface runoff in 1998 – threat to drinking water source (Lake Belton)
 – Remedial strategy involved passive and active treatment and removal of perchlorate
• Anaerobic WWT system brought on-line in 2002 – fluidized bed reactor (FBR)
• Treated effluent stored in holding ponds prior to batch or continuous discharge
• pH increase (> 9) noted in summer months – correlated to low flows and longer residence times
• Potential discharge permit implications
• No HAB formation – but potential existed!
HAB Events – Three Scenarios

Industrial WWTP – Texas Gulf Coast

- Industrial WWTP – Regional Wastewater Treatment Authority
 - Facility constructed in 1972 to meet new CWA standards
 - Serves industrial customers exclusively (two petrochemical facilities; one terminal facility)
 - Activated sludge system – formerly relied on combination of anaerobic, aerobic and facultative ponds
 - System upgraded in 2007 with construction of oxygen aeration basin (OAB) at front-end – 95% of treatment occurs here

- Seasonally adjust pH during summer months using sulfuric acid
- Presence of algae noted in storage basins
- Periodic biomonitoring included in permit
- Failure of biomonitoring test led to identification of Microcystin and triggered Toxicity Reduction Evaluation (TRE)
- HAB and cyanotoxins identified!
Exposure Guidelines for and Regulation of Cyanotoxins

- In 1998, the World Health Organization (WHO) proposed provisional drinking water guideline of 1 µg/l for Microcystin-LR
- No similar guideline proposed for recreational contact
- No current federally enforceable limits; Health Advisories (HAs) have been issued with recommended exposure limits
- Anatoxin-a, cylindrospermopsin, and microcystin-LR listed on draft CCL 4 (April 2015)
- State approaches:
 - Minnesota - Microcystin-LR: 0.1 µg/l
 - Oregon
 - Microcystin-LR: 1 µg/l
 - Anatoxin-A: 3 µg/l
 - Cylindrospermopsin: 1 µg/l
 - Saxitoxin: 3 µg/l
Exposure Guidelines for and Regulation of Cyanotoxins

• State approaches:
 – Minnesota - Microcystin-LR: 0.1 µg/l
 – Oregon
 • Microcystin-LR: 1 µg/l
 • Anatoxin-A: 3 µg/l
 • Cylindrospermopsin: 1 µg/l
 • Saxitoxin: 3 µg/l

• Ohio – following slide
Exposure Guidelines for and Regulation of Cyanotoxins

- State approaches:
- Ohio

<table>
<thead>
<tr>
<th>Cyanotoxin</th>
<th>Do Not Drink (children < 6 and sensitive groups)</th>
<th>Do Not Drink (children > 6 and adults)</th>
<th>Do Not Use (Recreational Contact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcystin</td>
<td>0.3 µg/l</td>
<td>1.6 µg/l</td>
<td>20 µg/l</td>
</tr>
<tr>
<td>Anatoxin-a</td>
<td>20 µg/l</td>
<td>20 µg/l</td>
<td>300 µg/l</td>
</tr>
<tr>
<td>Cylindrospermopsin</td>
<td>0.7 µg/l</td>
<td>3.0 µg/l</td>
<td>20.0 µg/l</td>
</tr>
<tr>
<td>Saxitoxin</td>
<td>0.2 µg/l</td>
<td>0.2 µg/l</td>
<td>3.0 µg/l</td>
</tr>
</tbody>
</table>
Summary and Conclusions

• A host of factors influence and control HAB development

• Role of key nutrients is paramount
 – N:P, N:S, N:Si ratios play role

• Understanding overall context also crucial
 – Relevant biotic and abiotic factors
 – Role of biological communities in controlling/mediating HABs

• HAB formation in industrial/remedial site settings
 – Potential to form anywhere water is held or stored prior to discharge
 – Establishing and maintaining good site controls essential
 – Monitoring of nutrient inputs (baseline) and periodically during warm and wet weather months

• Prevention of HAB formation is key!
• Questions?